If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 2.05x2 + -77.85x + 639 = 0 Reorder the terms: 639 + -77.85x + 2.05x2 = 0 Solving 639 + -77.85x + 2.05x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 2.05 the coefficient of the squared term: Divide each side by '2.05'. 311.7073171 + -37.97560976x + x2 = 0 Move the constant term to the right: Add '-311.7073171' to each side of the equation. 311.7073171 + -37.97560976x + -311.7073171 + x2 = 0 + -311.7073171 Reorder the terms: 311.7073171 + -311.7073171 + -37.97560976x + x2 = 0 + -311.7073171 Combine like terms: 311.7073171 + -311.7073171 = 0.0000000 0.0000000 + -37.97560976x + x2 = 0 + -311.7073171 -37.97560976x + x2 = 0 + -311.7073171 Combine like terms: 0 + -311.7073171 = -311.7073171 -37.97560976x + x2 = -311.7073171 The x term is -37.97560976x. Take half its coefficient (-18.98780488). Square it (360.5367342) and add it to both sides. Add '360.5367342' to each side of the equation. -37.97560976x + 360.5367342 + x2 = -311.7073171 + 360.5367342 Reorder the terms: 360.5367342 + -37.97560976x + x2 = -311.7073171 + 360.5367342 Combine like terms: -311.7073171 + 360.5367342 = 48.8294171 360.5367342 + -37.97560976x + x2 = 48.8294171 Factor a perfect square on the left side: (x + -18.98780488)(x + -18.98780488) = 48.8294171 Calculate the square root of the right side: 6.987804884 Break this problem into two subproblems by setting (x + -18.98780488) equal to 6.987804884 and -6.987804884.Subproblem 1
x + -18.98780488 = 6.987804884 Simplifying x + -18.98780488 = 6.987804884 Reorder the terms: -18.98780488 + x = 6.987804884 Solving -18.98780488 + x = 6.987804884 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '18.98780488' to each side of the equation. -18.98780488 + 18.98780488 + x = 6.987804884 + 18.98780488 Combine like terms: -18.98780488 + 18.98780488 = 0.00000000 0.00000000 + x = 6.987804884 + 18.98780488 x = 6.987804884 + 18.98780488 Combine like terms: 6.987804884 + 18.98780488 = 25.975609764 x = 25.975609764 Simplifying x = 25.975609764Subproblem 2
x + -18.98780488 = -6.987804884 Simplifying x + -18.98780488 = -6.987804884 Reorder the terms: -18.98780488 + x = -6.987804884 Solving -18.98780488 + x = -6.987804884 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '18.98780488' to each side of the equation. -18.98780488 + 18.98780488 + x = -6.987804884 + 18.98780488 Combine like terms: -18.98780488 + 18.98780488 = 0.00000000 0.00000000 + x = -6.987804884 + 18.98780488 x = -6.987804884 + 18.98780488 Combine like terms: -6.987804884 + 18.98780488 = 11.999999996 x = 11.999999996 Simplifying x = 11.999999996Solution
The solution to the problem is based on the solutions from the subproblems. x = {25.975609764, 11.999999996}
| 7(x-9)=3x+1 | | i^27= | | Y=5/6x-15 | | 7x^2-230x-2000=0 | | 2(x^2-25)^1/3 | | 80+x+50+x+70=180 | | z=-1+3i | | (10-3i)(-5+4i)= | | 5x^-3/25x^5 | | 3k-7h+7=0 | | (4b-4t)(4b+3t)= | | (-10-6i)-(8-10i)= | | -3t^2+42t+23=0 | | 90+x+69+x+39=180 | | (-6+11i)+(11-13i)= | | Y=-4.9x^2+4x+3 | | x^2+200p=500 | | y=ln(sqrt(x^2+1)) | | (3x-1)(5x+4)-15xsquared=17 | | 13x+2=5x+10 | | 7x(5x+24)= | | y^2+16y+8x+10=0 | | 65+8x-5+16x=180 | | 5(p+3q)-(7p+8q)=6 | | 5p(p+3q)-(7p+8q)=6 | | 6x+30x=0 | | 4xy-1xy= | | 5(2u-3)+2u=6(u-2)+3u | | 2(3v-1)+7v+6=5(v+3)-3v | | 2z+8=3(3z-2) | | y+3=2(x-9) | | 2k+8=3(3z-2) |